If it's not what You are looking for type in the equation solver your own equation and let us solve it.
39y^2+16y=0
a = 39; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·39·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*39}=\frac{-32}{78} =-16/39 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*39}=\frac{0}{78} =0 $
| 18u-5u+27=6u-27 | | p-10=10+7p-p | | 112+(5x+47)=180 | | 2+6c=5c | | 2+6=5c | | 162x–3=4x+1 | | 44m^2+96m=0 | | 10u+10=7u-8 | | 9c=9+10c | | 10p-6p-p=15 | | h+10=-10+3h-4h | | n-8=-3n | | 16−2t=8 | | w+3.9=7.59 | | 18z-17z+4z-z=12 | | -3k=-4-2k | | 5b-4=7b+10 | | s-s+s=14 | | -2v+9=-8v-9 | | 3t+t-3t-t+3t=18 | | u+3/5=13/2 | | -2(j+4)=-16 | | 10x-35=x | | –t=–10+9t | | 2v*2-3v-2=0 | | 16k-7k-5k=20 | | A=8/3(h-34) | | 0.7/4=12/x | | 3a=2a+5a-3a=7 | | 12=3(g+3) | | -5+4d=3D | | -6z=-8z-8 |